比和比例的优秀数学教案(精选10篇)
作为一位无私奉献的人民教师,很有必要精心设计一份教案,教案有助于学生理解并掌握系统的知识。那么应当如何写教案呢?以下是小编收集整理的比和比例的优秀数学教案,欢迎阅读,希望大家能够喜欢。
比和比例的优秀数学教案 篇1教学目标
1.理解比和比例的意义及性质.
2.理解比例尺的含义.
教学重点
整理比和比例、求比值及比例尺.
教学难点
正、反比例概念和判断及应用.
教学步骤
一、基本训练
43-27
5。65+0。54。8÷0。41。25÷100×1%
0。25×40
二、归纳整理
(一)比和比例的意义及性质.
1.回忆所学知识,填写表格【演示课件“比和比例”】
2.分组讨论:
比和分数、除法有什么联系?
比的基本性质有什么作用?比例的基本性质呢?
3.总结几种比的化简方法.【继续演示课件“比和比例”】
比
前项
∶(比号)
后项
比值
除法
分数
(1)整数比化简,比的前项和后项同时除以它们的最大公约数.
(2)小数比化简,一般是把前项、后项的小数点向右移动相同的位数(位数不够补零),使它成为整数比,再用第一种方法化简.
(3)分数比化简,一般先把比的前项、后项同时乘上分母的最小公倍数,使它成为整数比,再用第一种方法化简.
(4)用求比值的方法化简,求出比值后再写成比的形式.
解比例:12:x=8:2
4.巩固练习
(1)李师傅昨天6小时做了72个零件,今天8小时做了96个零件.写出李师傅昨天和今天所做零件个数的比和所用时间的比.这两个比能组成比例吗?为什么?
(2)甲数除以乙数的商是1。4,甲数和乙数的比是多少?
(3)解比例:∶=8∶2
(二)求比值和化简比.【继续演示课件“比和比例”】
1.求比值:4∶
化简比:4∶
2.比较求比值和化简比的区别.
一般方法
结果
求比值
根据比值的意义,用前项除以后项是一个商,可以是整数、小数或分数
化简比
根据比的基本性质,把比的前项和后项都乘以或者除以相同的数(零除外)
是一个比,它的前项和后项都是整数
3.巩固练习.
(1)求比值
45∶72∶3
(2)化简比
0.7∶0.25
(三)比例尺【继续演示课件“比和比例”】
1.出示中国地图
教师提问:
(1)这幅地图的比例尺是多少?(比例尺是)
(2)什么叫做比例尺?这个比例尺的含义是什么?(表示实际距离是图上距离的6000000倍)
(3)比例尺除了写成,以外,还可以怎样表示?
2.巩固练习
在一幅地图上,用3厘米长的线段表示实际距离900千米.这幅地图的比例尺是多少?
在这幅图上量得A、B两地的距离是2.5厘米,A、B两地的实际距离是多少千米?一条长480千米的高速公路,在这幅地图上是多少厘米?
(四)正比例和反比例【继续演示课件“比和比例”】
1.回忆正、反比例意义
2.巩固练习
(1)判断下面各题中的两种量是不是成比例.如果成比例,成什么比例.
①收入一定,支出和结余
②出米率一定,稻谷的重量和大米的重量.
③圆柱的侧面积一定,它的底面周长和高.
(2)木料总量、每件家具的用料和制成家具的件数这三种量
当()一定时,()和()成正比例;
当()一定时,()和()成正比例;
当()一定时,()和()成反比例.
(3)如果=8,和成()比例.
如果=,和成()比例.
(4)在一幅地图上,比例尺一定,图上距离和实际距离是不是成比例?成什么比例?
三、全课小结
这节课我们复习了什么?通过这节课的复习你有什么收获?还有哪些不清楚的问题?
四、课堂练习
1.填空.
(l)根据右面的线段图,写出下面的比.
①甲数与乙数的比是().甲数:
②乙数与甲数的比是().乙数:
③甲数与甲乙两数和的比是().
④乙数与甲乙两数和的比是().
(2)()24==24∶()=()%.
(3)∶6的比值是().如果前项乘上3,要使比值不变,后项应该().如果前项和后项都除以2,比值是().
(4)把(1吨):(250千克)化成最简整数比是(),它的比值是().
(5)与3。6的最简整数比是(),比值是().
(6)如果a×3=b×5,那么a∶b=()∶().
(7)如果a∶4=0。2∶7,那么a=().
(8)把线段比例尺改写成数值比例尺是().
(9)甲数乙数的比是4∶5,甲数就是乙数的().
(10)甲数的等于乙数的,甲乙两数的比是().
2.选择正确答案的序号填在()里.
(1)1克药放入100克水中,药与药水的比是().
①1∶99②1∶100③1∶101④100∶101
(2)一项工程,甲队单独做要10天,乙队单独做要8天.甲队和乙队工作效率的最简整数比是().
①10∶8②5∶4③4、∶5④∶
(3)在下面各比中,与∶能组成比例的是().
①4∶3②3∶4③∶3④∶
(4)有一无,某班的出勤率是90%,出勤人数和缺勤人数的比是().
①9∶10②10∶9③1∶9④9∶1
(5)在一幅地图上用1厘米的线段表示5千米的实际距离,这幅地图的比例尺是().
①1∶5②1∶5000③1∶500000
(6)用3、5、9、15这四个数组成的比例式是().
①15∶3=5∶9②3∶15③15∶9=5∶3④9∶3=5∶15
(7)在比例尺的地图上,2厘米表示().
①0.4千米②4千米③40千米
(8)大小两圆半径的比是3∶2,它们的面积的比是().
……此处隐藏6112个字……整数)
3.学生独立完成练习十五第3题,完成后用投影仪集体订正。
4.拓展练习。
(1)六(3)班男生人数是女生的1.2倍,男、女生人数的比是(),男生和全班人数的比是(),女生和全班人数的比是()。
(2)一个长方形周长是30厘米,长与宽的比是7∶3,求长与宽各是多少厘米?
四、课堂小结
通过今天的学习,你又掌握了哪些知识?什么是比的基本性质?应用比的基本性质如何化简比?
比和比例的优秀数学教案 篇9课题一:比和比例
【重点】比和比例的基本性质
【难点】应用比例解决实际问题
一【复习提问】
比和比例的基本性质是什么?
板书课题
师:同学们,今天我们来复习“比和比例”(板书课题)。
二、学习目标
1、掌握有关比和比例的知识。
2、运用比和比例知识解决实际问题。
师:为了达到目标,下面请大家认真地看书。
三、自学指导
认真看课本第89页下面的3个问题,思考:
1、什么叫做比?各部分名称是什么?什么叫做比的基本性质?什么叫做
2、略
3、你是怎样判断两种量成正比例还是成反比例的?举例说明。
5分钟后,比谁能做对检测题!
四、先学
(一)看书
学生认真看书,教师巡视,督促人人都在认真地看书、思考、填空。
(二)检测(课本第89页的例4)
1、找3名学生板演,其余生做在练习本上
2、教师认真巡视,发现错例,板书于黑板上对应位置。
五、后教
(一)更正
师:写完的同学请举手。下面,请大家一起看黑板上这些题,发现问题的同学请举手。(由差-中-好)
(二)讨论
1、看第(1)个题的式子,认为对的举手。为什么?
72:96=3:46:8=3:4
2、上面两个比能组成比例吗?为什么?
3、什么叫做比例?各部分名称是什么?什么叫做比例的基本性质?
4、看第(3)题的算式,认为对的举手?为什么?生说,师小结:
5、看每道题的计算过程和结果,若对,问:认为对的请举手。若错,追问:为什么?错在了哪里?
6、评正确率、板书,并让学生同桌对改。
过渡:老师发现,从上课到现在每个同学都很认真,老师为你们感到骄傲。现在老师这里还有几道题,你们敢不敢来挑战啊?(生:想)
六、补充练习
1、一条绿化带长350米,在平面图上用7厘米的线段表示。这幅图纸的比例尺是多少?
2、在比例尺是1:3000000的地图上,量得A地到B地的距离是5厘米。求AB两地的实际距离。
师:同学们,今天的知识你学会了?下面我们就来运用今天所学的知识来做作业,比谁的课堂作业做得好。
七、当堂训练(课本练习十七)
第2、3、4、5题
八、整体感知:
本课主要复习比和比例的意义与性质、比例尺的知识。本节课知识的呈现是这样的:
教材先把比和比例的意义和性质归纳整理成表,通过对比使学生弄清比和比例的概念,再通过“说一说”、“想一想”、“做一做”等形式进一步巩固所学知识。
其中,求比值和化简比是学生容易混淆发生错误的地方,复习时应从“一般方法”和“结果”两方面加以比较,以便使学生形成清晰的概念,掌握“比较”的学习方法。在复习比例尺时,要使学生理解比例尺实际上是一个比,是图上距离和实际距离的比。
着重训练学生能够应用比例的知识,求出平面图的比例尺以及根据比例尺求出图上距离和实际距离。
比和比例的优秀数学教案 篇10课前准备:
教师准备:
PPT课件
教学过程:
⊙谈话揭题
1.谈话。
师:我们学过了关于比的哪些知识?(结合学生回答,板书知识网络)
预设
生1:比的意义。
生2:比和分数、除法的关系。
生3:比的基本性质。
生4:求比值和化简比。
生5:比例尺。
生6:按比分配。
2.揭题。
同学们说得很全面,这节课我们就来复习有关比的知识。[板书课题:比和比例(一)]
⊙回顾与整理
1.比的意义。
(1)什么叫比?比的各部分名称是怎样规定的?
①两个数相除又叫做两个数的比。
②“∶”是比号,读作“比”。比号前面的数叫做比的前项,比号后面的数叫做比的后项。比的前项除以后项所得的商,叫做比值。
(2)比和分数、除法有怎样的关系?
预设
生1:同除法比较,比的前项相当于被除数,后项相当于除数,比号相当于除号,比值相当于商。
生2:比值通常用分数表示,也可以用小数表示,有时也可能是整数。
生3:根据分数与比的关系可知,比的前项相当于分子,后项相当于分母,比号相当于分数线,比值相当于分数值。
2.比的基本性质。
比的前项和后项同时乘或者除以相同的数(0除外),比值不变,这叫做比的基本性质。
3.求比值和化简比。
(1)求比值的方法。
用比的前项除以后项,它的结果是一个数值,可以是整数,也可以是小数或分数。
(2)化简比的方法。
根据比的基本性质可以把比化成最简单的整数比。它的结果必须是一个最简比,即前项和后项是互质数。
(3)求比值与化简比的不同点。
学生讨论后汇报:
预设
生1:方法不同,求比值是根据比值的意义,用比的前项除以比的后项;化简比是根据比的基本性质,把比的前项和后项都乘或除以相同的数(0除外)。
生2:求比值的结果是一个数;化简比的结果是一个最简比。
4.按比分配。
(1)按比分配的意义。
把一个数量按照一定的比分成几部分,叫做按比分配。
(2)按比分配的方法。
首先求出各部分数量占总量的几分之几,然后分别求出总量的几分之几是多少。
⊙典型例题解析
1.课件出示例1。
求下面各比的比值。
(1)24∶36(2)0.25∶(3)2吨∶450千克
解析本题考查的是学生求比值的能力。用比的前项除以后项可求出各比的比值,求比值时应注意比的前项与后项的单位要统一,且比值可以是整数、小数或分数,但不能是一个比。
解答(1)24∶36=24÷36=
(2)0.25∶=÷=
(3)2吨∶450千克=2000千克∶450千克=2000÷450=4
文档为doc格式