比和比例的优秀数学教案

时间:2024-09-24 11:24:09
比和比例的优秀数学教案(精选10篇)

比和比例的优秀数学教案(精选10篇)

作为一位无私奉献的人民教师,很有必要精心设计一份教案,教案有助于学生理解并掌握系统的知识。那么应当如何写教案呢?以下是小编收集整理的比和比例的优秀数学教案,欢迎阅读,希望大家能够喜欢。

  比和比例的优秀数学教案 篇1

教学目标

1.理解比和比例的意义及性质.

2.理解比例尺的含义.

教学重点

整理比和比例、求比值及比例尺.

教学难点

正、反比例概念和判断及应用.

教学步骤

一、基本训练

43-27

5。65+0。54。8÷0。41。25÷100×1%

0。25×40

二、归纳整理

(一)比和比例的意义及性质.

1.回忆所学知识,填写表格【演示课件“比和比例”】

2.分组讨论:

比和分数、除法有什么联系?

比的基本性质有什么作用?比例的基本性质呢?

3.总结几种比的化简方法.【继续演示课件“比和比例”】

前项

∶(比号)

后项

比值

除法

分数

(1)整数比化简,比的前项和后项同时除以它们的最大公约数.

(2)小数比化简,一般是把前项、后项的小数点向右移动相同的位数(位数不够补零),使它成为整数比,再用第一种方法化简.

(3)分数比化简,一般先把比的前项、后项同时乘上分母的最小公倍数,使它成为整数比,再用第一种方法化简.

(4)用求比值的方法化简,求出比值后再写成比的形式.

解比例:12:x=8:2

4.巩固练习

(1)李师傅昨天6小时做了72个零件,今天8小时做了96个零件.写出李师傅昨天和今天所做零件个数的比和所用时间的比.这两个比能组成比例吗?为什么?

(2)甲数除以乙数的商是1。4,甲数和乙数的比是多少?

(3)解比例:∶=8∶2

(二)求比值和化简比.【继续演示课件“比和比例”】

1.求比值:4∶

化简比:4∶

2.比较求比值和化简比的区别.

一般方法

结果

求比值

根据比值的意义,用前项除以后项是一个商,可以是整数、小数或分数

化简比

根据比的基本性质,把比的前项和后项都乘以或者除以相同的数(零除外)

是一个比,它的前项和后项都是整数

3.巩固练习.

(1)求比值

45∶72∶3

(2)化简比

0.7∶0.25

(三)比例尺【继续演示课件“比和比例”】

1.出示中国地图

教师提问:

(1)这幅地图的比例尺是多少?(比例尺是)

(2)什么叫做比例尺?这个比例尺的含义是什么?(表示实际距离是图上距离的6000000倍)

(3)比例尺除了写成,以外,还可以怎样表示?

2.巩固练习

在一幅地图上,用3厘米长的线段表示实际距离900千米.这幅地图的比例尺是多少?

在这幅图上量得A、B两地的距离是2.5厘米,A、B两地的实际距离是多少千米?一条长480千米的高速公路,在这幅地图上是多少厘米?

(四)正比例和反比例【继续演示课件“比和比例”】

1.回忆正、反比例意义

2.巩固练习

(1)判断下面各题中的两种量是不是成比例.如果成比例,成什么比例.

①收入一定,支出和结余

②出米率一定,稻谷的重量和大米的重量.

③圆柱的侧面积一定,它的底面周长和高.

(2)木料总量、每件家具的用料和制成家具的件数这三种量

当()一定时,()和()成正比例;

当()一定时,()和()成正比例;

当()一定时,()和()成反比例.

(3)如果=8,和成()比例.

如果=,和成()比例.

(4)在一幅地图上,比例尺一定,图上距离和实际距离是不是成比例?成什么比例?

三、全课小结

这节课我们复习了什么?通过这节课的复习你有什么收获?还有哪些不清楚的问题?

四、课堂练习

1.填空.

(l)根据右面的线段图,写出下面的比.

①甲数与乙数的比是().甲数:

②乙数与甲数的比是().乙数:

③甲数与甲乙两数和的比是().

④乙数与甲乙两数和的比是().

(2)()24==24∶()=()%.

(3)∶6的比值是().如果前项乘上3,要使比值不变,后项应该().如果前项和后项都除以2,比值是().

(4)把(1吨):(250千克)化成最简整数比是(),它的比值是().

(5)与3。6的最简整数比是(),比值是().

(6)如果a×3=b×5,那么a∶b=()∶().

(7)如果a∶4=0。2∶7,那么a=().

(8)把线段比例尺改写成数值比例尺是().

(9)甲数乙数的比是4∶5,甲数就是乙数的().

(10)甲数的等于乙数的,甲乙两数的比是().

2.选择正确答案的序号填在()里.

(1)1克药放入100克水中,药与药水的比是().

①1∶99②1∶100③1∶101④100∶101

(2)一项工程,甲队单独做要10天,乙队单独做要8天.甲队和乙队工作效率的最简整数比是().

①10∶8②5∶4③4、∶5④∶

(3)在下面各比中,与∶能组成比例的是().

①4∶3②3∶4③∶3④∶

(4)有一无,某班的出勤率是90%,出勤人数和缺勤人数的比是().

①9∶10②10∶9③1∶9④9∶1

(5)在一幅地图上用1厘米的线段表示5千米的实际距离,这幅地图的比例尺是().

①1∶5②1∶5000③1∶500000

(6)用3、5、9、15这四个数组成的比例式是().

①15∶3=5∶9②3∶15③15∶9=5∶3④9∶3=5∶15

(7)在比例尺的地图上,2厘米表示().

①0.4千米②4千米③40千米

(8)大小两圆半径的比是3∶2,它们的面积的比是().

……此处隐藏6112个字……整数)

3.学生独立完成练习十五第3题,完成后用投影仪集体订正。

4.拓展练习。

(1)六(3)班男生人数是女生的1.2倍,男、女生人数的比是(),男生和全班人数的比是(),女生和全班人数的比是()。

(2)一个长方形周长是30厘米,长与宽的比是7∶3,求长与宽各是多少厘米?

四、课堂小结

通过今天的学习,你又掌握了哪些知识?什么是比的基本性质?应用比的基本性质如何化简比?

  比和比例的优秀数学教案 篇9

课题一:比和比例

【重点】比和比例的基本性质

【难点】应用比例解决实际问题

一【复习提问】

比和比例的基本性质是什么?

板书课题

师:同学们,今天我们来复习“比和比例”(板书课题)。

二、学习目标

1、掌握有关比和比例的知识。

2、运用比和比例知识解决实际问题。

师:为了达到目标,下面请大家认真地看书。

三、自学指导

认真看课本第89页下面的3个问题,思考:

1、什么叫做比?各部分名称是什么?什么叫做比的基本性质?什么叫做

2、略

3、你是怎样判断两种量成正比例还是成反比例的?举例说明。

5分钟后,比谁能做对检测题!

四、先学

(一)看书

学生认真看书,教师巡视,督促人人都在认真地看书、思考、填空。

(二)检测(课本第89页的例4)

1、找3名学生板演,其余生做在练习本上

2、教师认真巡视,发现错例,板书于黑板上对应位置。

五、后教

(一)更正

师:写完的同学请举手。下面,请大家一起看黑板上这些题,发现问题的同学请举手。(由差-中-好)

(二)讨论

1、看第(1)个题的式子,认为对的举手。为什么?

72:96=3:46:8=3:4

2、上面两个比能组成比例吗?为什么?

3、什么叫做比例?各部分名称是什么?什么叫做比例的基本性质?

4、看第(3)题的算式,认为对的举手?为什么?生说,师小结:

5、看每道题的计算过程和结果,若对,问:认为对的请举手。若错,追问:为什么?错在了哪里?

6、评正确率、板书,并让学生同桌对改。

过渡:老师发现,从上课到现在每个同学都很认真,老师为你们感到骄傲。现在老师这里还有几道题,你们敢不敢来挑战啊?(生:想)

六、补充练习

1、一条绿化带长350米,在平面图上用7厘米的线段表示。这幅图纸的比例尺是多少?

2、在比例尺是1:3000000的地图上,量得A地到B地的距离是5厘米。求AB两地的实际距离。

师:同学们,今天的知识你学会了?下面我们就来运用今天所学的知识来做作业,比谁的课堂作业做得好。

七、当堂训练(课本练习十七)

第2、3、4、5题

八、整体感知:

本课主要复习比和比例的意义与性质、比例尺的知识。本节课知识的呈现是这样的:

教材先把比和比例的意义和性质归纳整理成表,通过对比使学生弄清比和比例的概念,再通过“说一说”、“想一想”、“做一做”等形式进一步巩固所学知识。

其中,求比值和化简比是学生容易混淆发生错误的地方,复习时应从“一般方法”和“结果”两方面加以比较,以便使学生形成清晰的概念,掌握“比较”的学习方法。在复习比例尺时,要使学生理解比例尺实际上是一个比,是图上距离和实际距离的比。

着重训练学生能够应用比例的知识,求出平面图的比例尺以及根据比例尺求出图上距离和实际距离。

  比和比例的优秀数学教案 篇10

课前准备:

教师准备:

  PPT课件

教学过程:

⊙谈话揭题

1.谈话。

师:我们学过了关于比的哪些知识?(结合学生回答,板书知识网络)

预设

生1:比的意义。

生2:比和分数、除法的关系。

生3:比的基本性质。

生4:求比值和化简比。

生5:比例尺。

生6:按比分配。

2.揭题。

同学们说得很全面,这节课我们就来复习有关比的知识。[板书课题:比和比例(一)]

⊙回顾与整理

1.比的意义。

(1)什么叫比?比的各部分名称是怎样规定的?

①两个数相除又叫做两个数的比。

②“∶”是比号,读作“比”。比号前面的数叫做比的前项,比号后面的数叫做比的后项。比的前项除以后项所得的商,叫做比值。

(2)比和分数、除法有怎样的关系?

预设

生1:同除法比较,比的前项相当于被除数,后项相当于除数,比号相当于除号,比值相当于商。

生2:比值通常用分数表示,也可以用小数表示,有时也可能是整数。

生3:根据分数与比的关系可知,比的前项相当于分子,后项相当于分母,比号相当于分数线,比值相当于分数值。

2.比的基本性质。

比的前项和后项同时乘或者除以相同的数(0除外),比值不变,这叫做比的基本性质。

3.求比值和化简比。

(1)求比值的方法。

用比的前项除以后项,它的结果是一个数值,可以是整数,也可以是小数或分数。

(2)化简比的方法。

根据比的基本性质可以把比化成最简单的整数比。它的结果必须是一个最简比,即前项和后项是互质数。

(3)求比值与化简比的不同点。

学生讨论后汇报:

预设

生1:方法不同,求比值是根据比值的意义,用比的前项除以比的后项;化简比是根据比的基本性质,把比的前项和后项都乘或除以相同的数(0除外)。

生2:求比值的结果是一个数;化简比的结果是一个最简比。

4.按比分配。

(1)按比分配的意义。

把一个数量按照一定的比分成几部分,叫做按比分配。

(2)按比分配的方法。

首先求出各部分数量占总量的几分之几,然后分别求出总量的几分之几是多少。

⊙典型例题解析

1.课件出示例1。

求下面各比的比值。

(1)24∶36(2)0.25∶(3)2吨∶450千克

解析本题考查的是学生求比值的能力。用比的前项除以后项可求出各比的比值,求比值时应注意比的前项与后项的单位要统一,且比值可以是整数、小数或分数,但不能是一个比。

解答(1)24∶36=24÷36=

(2)0.25∶=÷=

(3)2吨∶450千克=2000千克∶450千克=2000÷450=4

《比和比例的优秀数学教案(精选10篇).doc》
将本文的Word文档下载到电脑,方便收藏和打印
推荐度:
点击下载文档

文档为doc格式